A wide-ranging study pre-published on-line in Nature last month points the finger at the chemokine CCL2 (also known as MCP-1, or JE in mice) as a key regulator of tumour metastasis. Intriguingly, CCL2 seems to participate in the generation of clinically-relevant metastatic disease on multiple levels: it promotes seeding of the shed metastatic cells, but it also promotes establishment and growth of the micrometastases, a process that is dependent on VEGF production from a tissue macrophage subset that responds to CCL2. All this nicely suggests that CCL2 (and its signaling pathway) may be an attractive therapeutic avenue for reducing the risk of metastasis. The close links between the academic authors and the global pharmaceutical company Johnson & Johnson suggests that this avenue is already being aggressively pursued.
But what about CCL2 as a biomarker for detecting early metastasis and directing treatment? The study shows that the density of CCL2-expressing macrophages in the region of the metastasis is associated with disease progression, so it seems plausible that measuring CCL2 levels in appropriate biological samples (whether tissue or blood) might be a productive investigation.
All this has special resonance for scientists at Total Scientific. A decade ago, similar data (here and here) linking CCL2 to the mechanism of atherosclerosis and vascular restenosis prompted us, among others, to investigate whether circulating levels of CCL2 might be predictive of coronary heart disease.
The bottom-line finding (that CCL2 levels in serum are not linked to heart disease) was disappointing. But the process of getting to that conclusion was highly instructive. CCL2 binds to blood cells through both high affinity (receptor) interactions and lower affinity (matrix) associations. The amount of CCL2 bound to signaling receptors is essentially irrelevant for the measurement of CCL2 in blood, but the lower affinity associations turned out to be much more significant. As much as 90% of the CCL2 in blood is bound to the enigmatic Duffy antigen on red blood cells (enigmatic because this receptor seems to be related to chemokine receptors but lacks any kind of signaling function). Worse still, this equilibrium is readily disturbed during the processing of the blood sample: anticoagulants such as heparin or EDTA shift the equilibrium in one direction or the other altering apparent CCL2 levels. Minor variations in the sample preparation protocol can have dramatic effects on the measured levels – whether between studies or within a study – not a good sign for a biomarker to achieve clinical and commercial utility.
And it’s not only ex vivo …
The Cambridge Partnership is the only professional services company in the UK exclusively dedicated to supporting companies in the biotechnology industry. We specialize in providing a “one-stop shop” for accountancy, company secretarial, IP management and admin services. The Cambridge Partnership was founded in 2012 to fill a gap. Running a biotechnology company has little …